Antibiotic Stewardship: Beyond the Sepsis Calculator

Karen Puopolo, MD, PhD

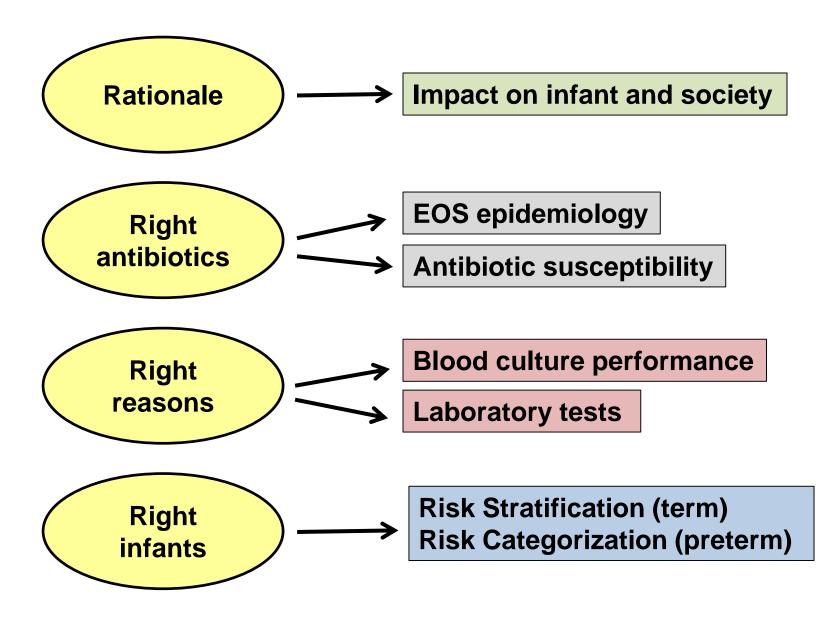
Illinois Perinatal Quality Collaborative 9th Annual Conference October 28, 2021

Antibiotic Stewardship Among Preterm Infants

Karen M. Puopolo M.D., Ph.D.

Division of Neonatology, Children's Hospital of Philadelphia Chief, Section on Newborn Medicine, Pennsylvania Hospital Associate Professor of Pediatrics University of Pennsylvania Perelman School of Medicine

DISCLOSURE STATEMENT

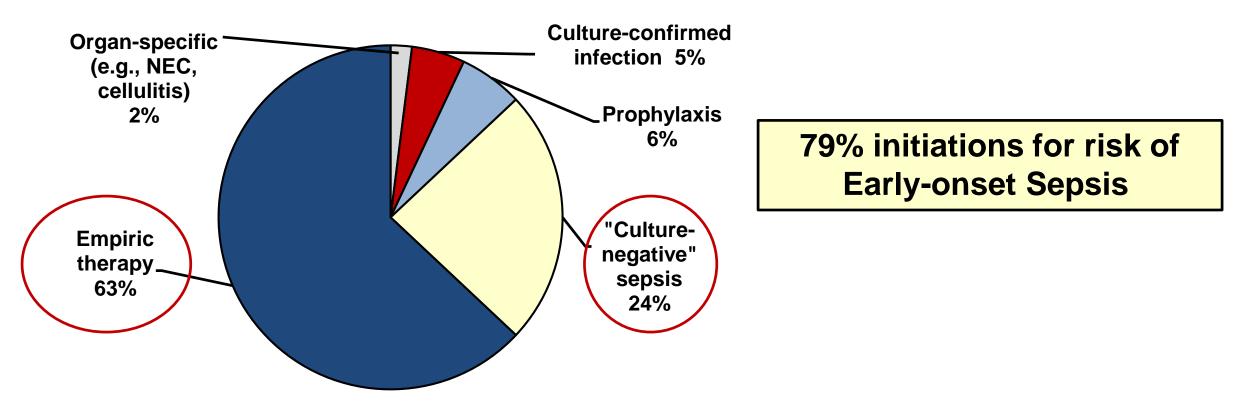

Karen M. Puopolo MD, PhD

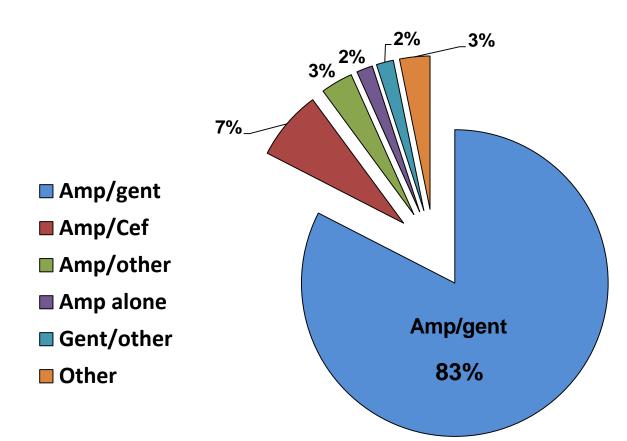
- I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity
- I do not intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

What are the Real Goals of Neonatal Antibiotic Stewardship?

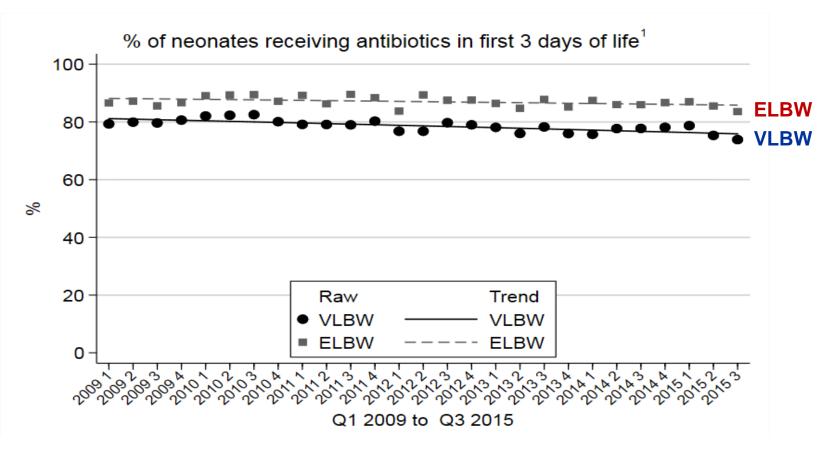
- Some babies need antibiotics
- Some babies need a lot of antibiotics
- Antibiotic stewardship is NOT just about giving fewer antibiotics
- Antibiotic stewardship is about giving the right antibiotics, to the right babies, for the right reasons (and at the right dose)

Neonatal Antibiotic Stewardship

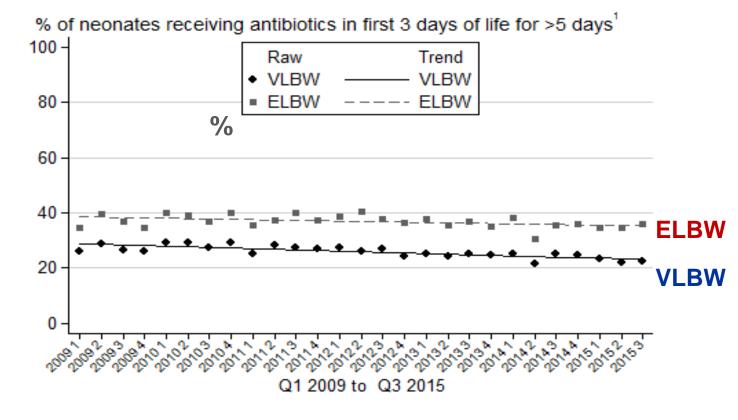

The Rationale



What Drives Antibiotic Use in the NICU?


- 14 month single center surveillance
- 1607 infants and 343 Days of therapy/1000 Patient-days

Antibiotic Initiation and Extension


- NICHD Neonatal Research Network, 1998-2001
- 5693 infants with BW < 1000 grams
- 98% received antibiotics in the first 3 days of life
- 53% of uninfected infants received early antibiotics ≥5 days

Contemporary National Data on Early Antibiotic Use Among Preterm Infants

- Premier database
- 297 centers including 40,364 infants
- Antibiotic administered
 ≤3 days of age
 - 87% ELBW
 - 79% VLBW
- No change 2009-2015

And Once We Start...

- Early antibiotics extended >5 days
 - ELBW: 38%
 - VLBW: 27%
- Significant decrease over time for VLBW infants
- Rates of EOS
 - ELBW: 2.1%
 - VLBW: 1.4%

Prolonged Empiric Antibiotic Exposure and Risk of NEC and Death

4039 ELBW infants 1998-2001

53% early antibiotics ≥5 days

NEC

No NEC

61% early antibiotics ≥5 days

51% early antibiotics ≥5 days

With each additional day of antibiotics

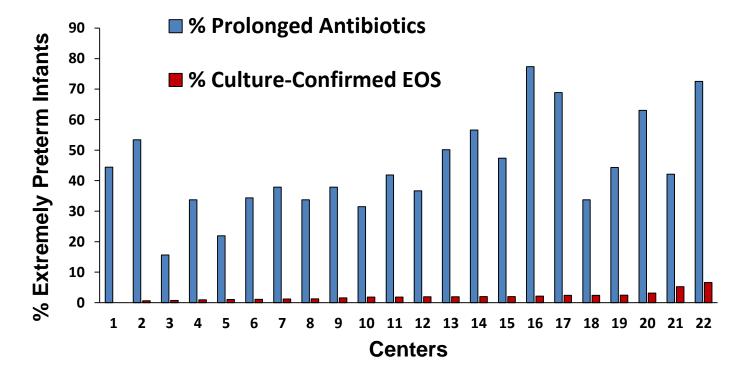
- 7% increase in odds of NEC
- 16% increase in odds of mortality

5730 ELBW infants


2008-2014

44% early antibiotics ≥5 days 49% in 2008 → 35% in 2014

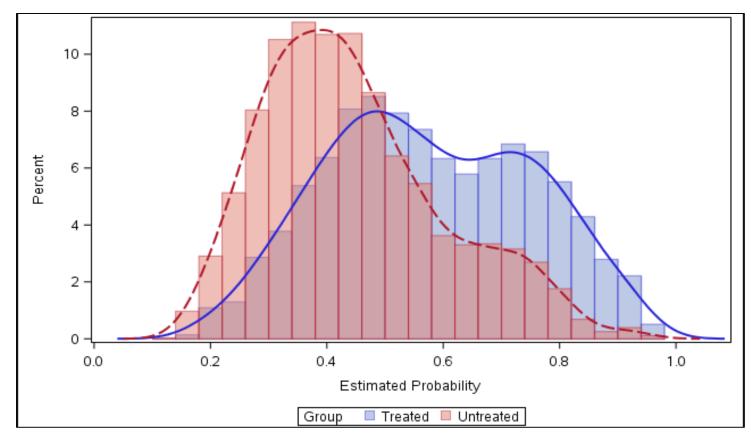
Death/NEC


- 25% among those with early antibiotics ≥5 days
- 20% among those without early antibiotics ≥5 days

Antibiotics and Outcomes Among VLBW Infants

- Antibiotic Use Rate (AUR) decreased over time from 0.29 → 0.24
- Examined 8824 infants by AUR quartile
- Mortality highest in highest AUR quartile
- Overall adjusted risk (OR, 95% CI):
 - Mortality: 2.04 (1.87-2.21)
 - Major morbidity or mortality: 1.18 (1.13-1.23)

Significant Variation in Use of Prolonged Early Antibiotics


There may be infants with similar clinical status who were managed differently – does this differential practice alter infant outcomes?

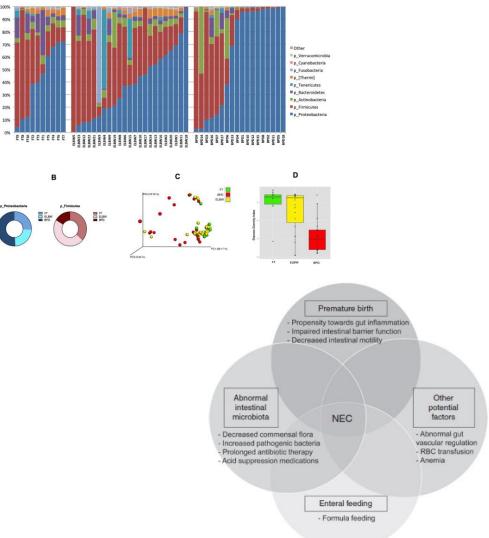
Propensity Score-Matched Comparison

- 7354 infants born at Neonatal Research Network centers 2006-2014 with GA <27 wks and BW <1000 g
 - 1547 excluded (NEC/SIP, early death, missing data)
 - 2978 received antibiotics ≥5 days from birth; 2829 did not
- Using propensity score, matched 4362 infants
 - GA, BW, Sex
 - Chorioamnionitis
 - Maternal antibiotics
 - Antenatal steroids
 - Cesarean delivery
 - Membrane rupture >18 hours
 - Respiratory support at 24 h
 - Severe IVH at \leq 7 days

- Intubation at birth
- First temperature
- Enteral feeds at ≤3 days
- Maternal hypertension
- Antepartum hemorrhage
- Race/ethnicity
- Maternal education and insurance

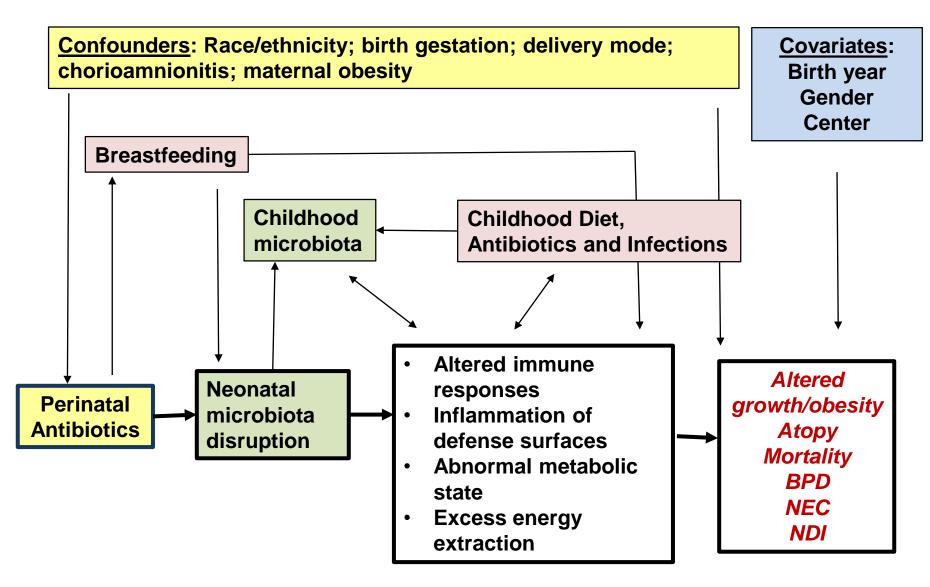
Propensity Score Match

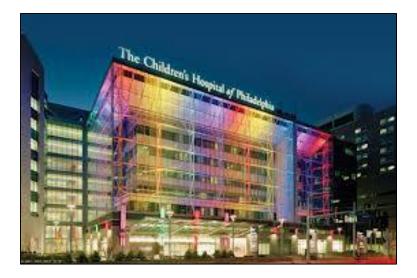
- Some babies everyone will treat with prolonged antibiotics
- Some babies no one will treat with prolonged antibiotics
- 75% of the cohort matched


No Difference in Outcomes

	Prolonged Abx n=2181	No Prolonged Abx n=2181	RR (95% CI)
Death/NDI	1,091 (50.0)	1,047 (48.0)	1.04 (0.98-1.11)
Death	512 (23.5)	469 (21.5)	1.09 (0.98-1.22)
NDI	579 (34.7)	578 (33.8)	1.03 (0.94-1.13)

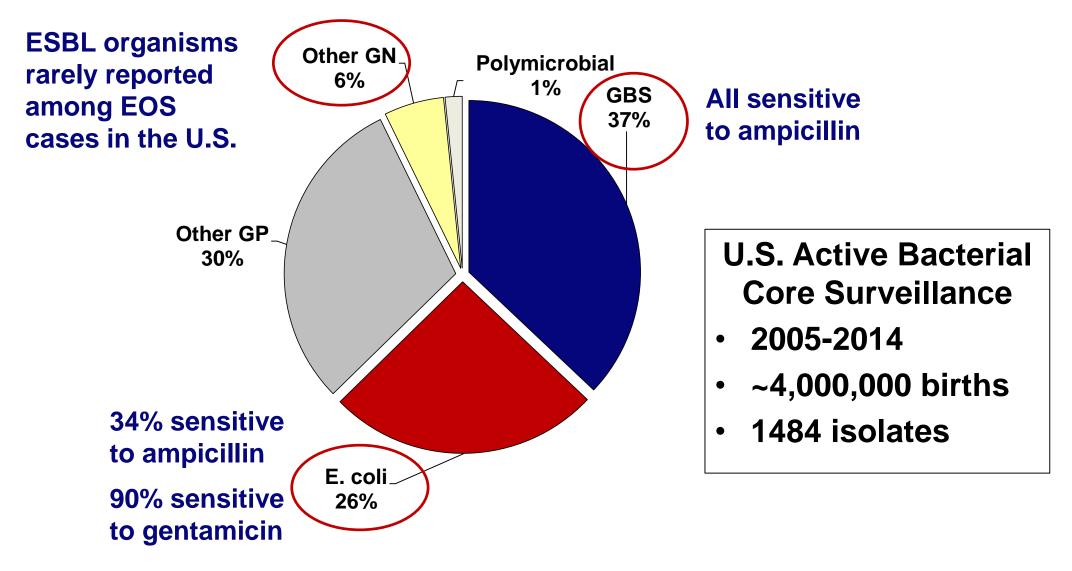
- Among clinically similar infants, management with or without prolonged antibiotic therapy did not reduce risk of death or NDI or the combined outcome
- In the absence of benefit, prolonged antibiotic use exposes the infant only to the potential risks

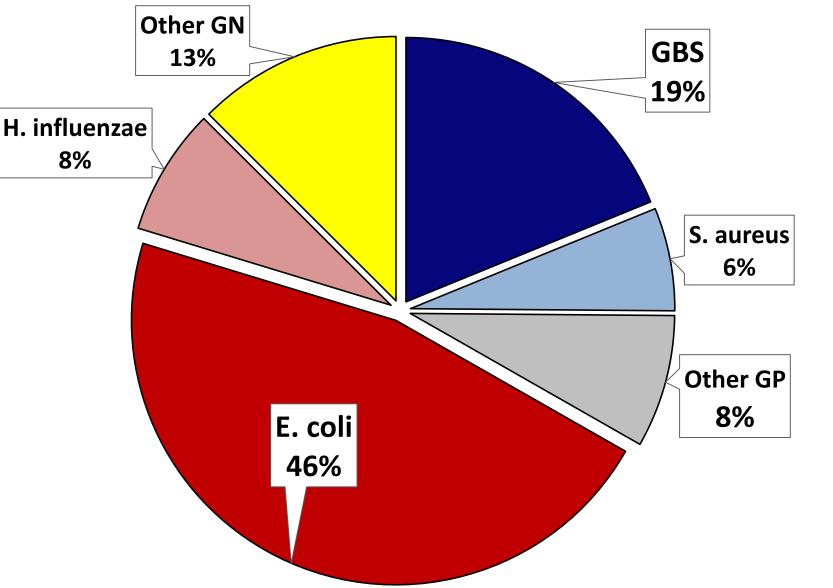

Evolving Understanding of the Role of Microbiome in Infection and Immunity


- Reduces biodiversity
- Reduces colonization with "normal flora"
- Promotes proliferation of pathogenic organisms
- Selects for antibiotic resistant organisms
- May promote pathologic immune responses leading to organ damage due to inflammation and altered growth and development

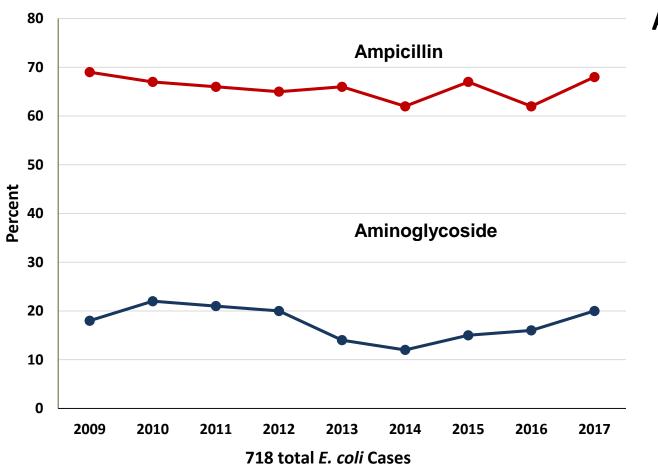
Patel and Denning (2015) Pediatr Res; Lal, et al (2016) Sci Rpt

Conceptual Model: Perinatal Antibiotics and Infant/Child Outcomes


The Right Antibiotics


Antibiotic Susceptibilities

EOS Among VLBW Infants


- Prospective observational study of 84,333 infants
 - -753 centers participating in Vermont-Oxford Network
 - -49 states and District of Columbia
- Gestational age 22-29 weeks (regardless of BW) or
- Birth weight 401-1500 grams (regardless of GA)
- January 1, 2018 December 31, 2019

EOS Microbiology Among VLBW Infants

- 1158 isolates among 84,333 infants
- E. coli dominates
- HOWEVER, 1/3 of cases caused by an organism other than GBS or *E. coli*

Antibiotic Resistance in E. coli

Among 218 E. coli EOS cases

- 32% susceptible to both ampicillin and gentamicin
- 58% resistant to ampicillin but sensitive to gentamicin
- 10% resistant to both
 - 12/89 (14%) among VLBWs
 - 10/129 (8%) among infants with BW >1500 grams

Other EOS Organisms and Antibiotic Susceptibility

Gram-positive	n	Gram-negative	n
Enterococcus	13	Haemophilus	9
Group A Streptococcus	9	Klebsiella	7
Viridans streptococci	7	Morganella	3
Streptococcus bovis	6	Citrobacter	1
Streptococcus sp.	5	Enterobacter	1
Streptococcus pneumoniae	3	Flavobacterium	1
CONS	2	Proteus	1
Listeria monocytogenes	3	Pseudomonas	1
Staphylococcus aureus	3	<i>E. coli</i> + other	3
Candida albicans	4	Haemophilus + other	1

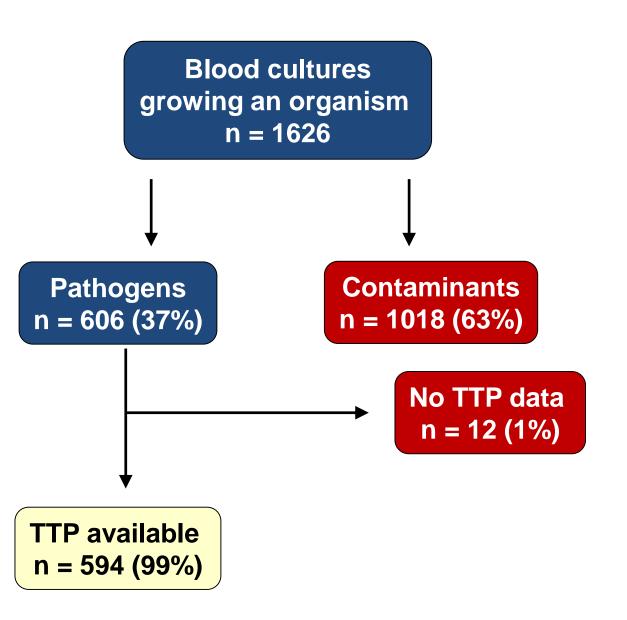
Other EOS Organisms and Antibiotic Susceptibility

Gram-positive	n	Gram-negative	n
Enterococcus	13	Haemophilus	9
Group A Streptococcus	9	Klebsiella	7
Viridans streptococci	7	Morganella	3
Streptococcus bovis	6	Citrobacter	1
Streptococcus sp.	5	Enterobacter	1
Streptococcus pneumoniae	3	Flavobacterium	1
CONS	2	Proteus	1
Listeria monocytogenes	3	Pseudomonas	1
Staphylococcus aureus	3	<i>E. coli</i> + other	3
Candida albicans	4	Haemophilus + other	1

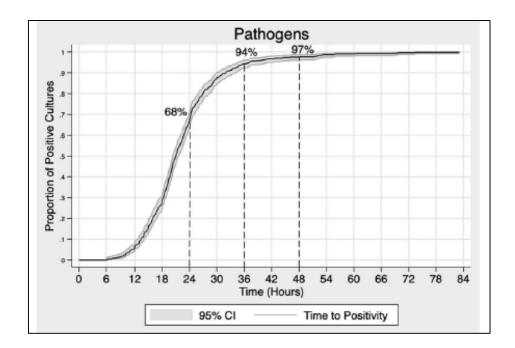
- Ampicillin and gentamicin may not be effective empiric therapy for ~8% of isolates in NRN surveillance
- No single alternative would be effective in all cases
- Clinicians should use judgment to consider additional, broader-spectrum therapy until culture results are known

The Right Reasons

Blood Culture Time to Positivity


- "48-hour rule-out" based on daily examination of broth culture for visual turbidity and 12-hourly reviews of plate subcultures
- Current blood culture techniques rely on production of CO2 or change in gas pressure for continuous detection of bacterial growth
 - Optimized to detect very low levels of bacteremia
 - Neutralize antibiotics in circulation

Blood Culture Time to Positivity


- Study of time-to-positivity
 - Boston, Philadelphia, Northern California
 - Two different blood culture systems
 - Different laboratory services
- Study population consisted of a total 491,462 infants
 - 71,345 blood cultures were obtained at <72 hours among the 429,442 infants born at 15 Kaiser-Permante Northern California centers, one Boston hospital and two Philadelphia hospitals (total culture number was not available for 2nd Boston hospital)

Blood Culture Time to Positivity

- Boston, Philadelphia, Northern California 1993-2017
- Two different blood culture systems
- Total 491,462 infants / 72,000 blood cultures obtained at <72 hours among

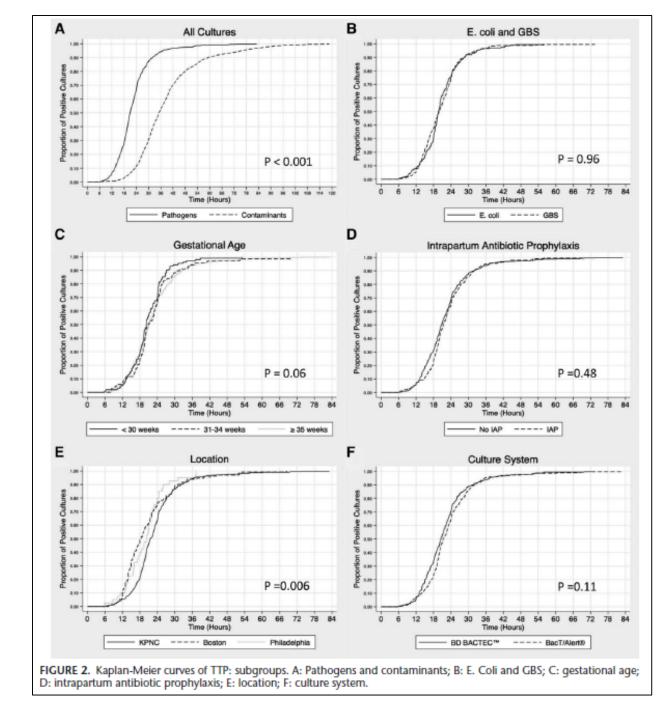
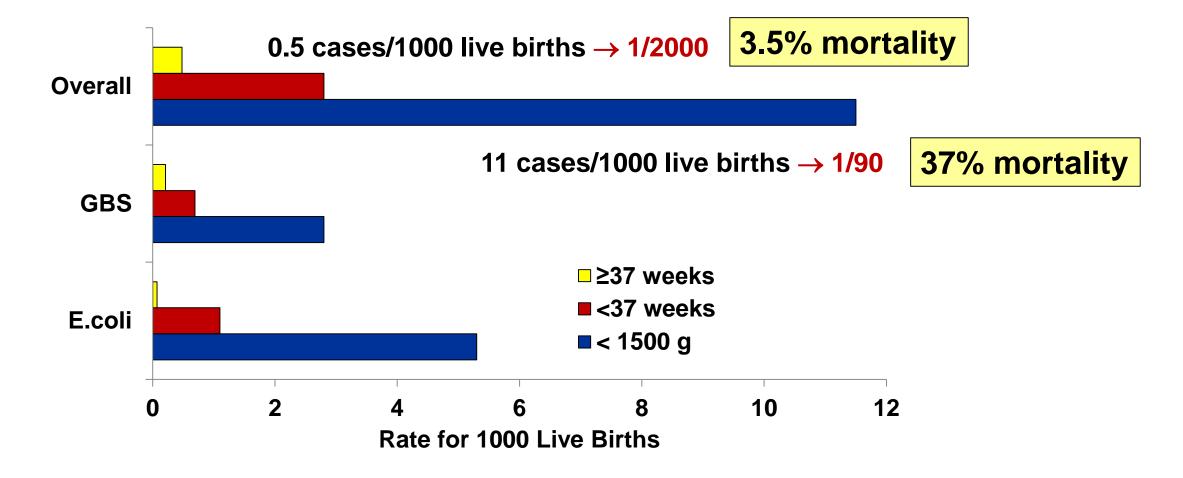

Overall Time to Positivity

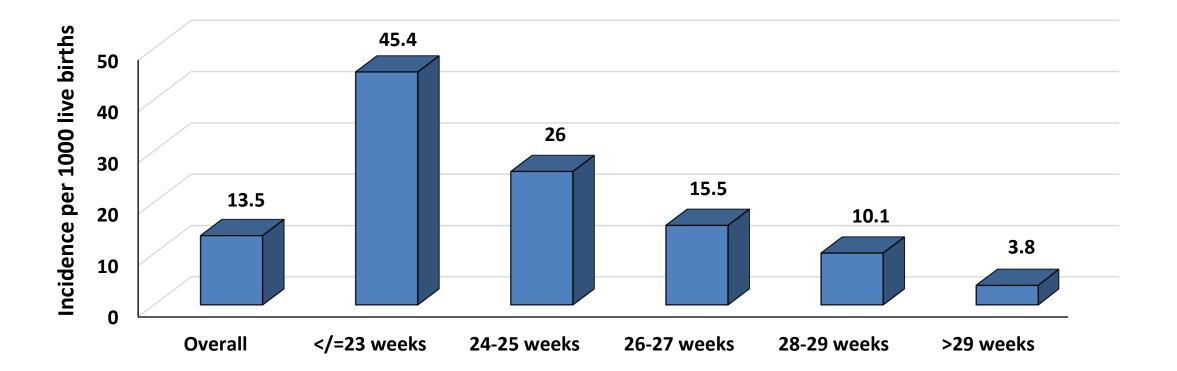
TABLE 1. Characteristics of Infants and Mothers, n = 594			
Male, n (%)	302 (50.8)		
Gestational age (weeks), median (IQR)	38 (34-40)		
Gestational age (weeks), n (%)			
<28	74 (12.5)		
28-31	51 (8.6)		
32-34	45 (7.6)		
≥35	424 (71.4)		
Cesarean delivery, n (%)	124 (20.9)		
Maternal intrapartum antibiotics, n (%)	195 (32.8)		
Maternal GBS status, n (%)			
Positive	75 (12.6)		
Negative	459 (77.3)		
Unknown	60 (10.1)		
Rupture of membranes ≥ 18 hours, n (%)	178 (30.0)		
Hours after birth when culture was drawn, median (IQF	R) 1.4 (0.9-5.5)		

- 68% positive by 24 hours
- 94% positive by 36 hours
- 97% positive by 48 hours

- Longer TTP for contaminants
- Longer TTP at KPNC centers
 with off-site lab services
- NO difference in TTP by
 - organism
 - gestational age
 - culture system
 - whether or not mother received intrapartum antibiotics

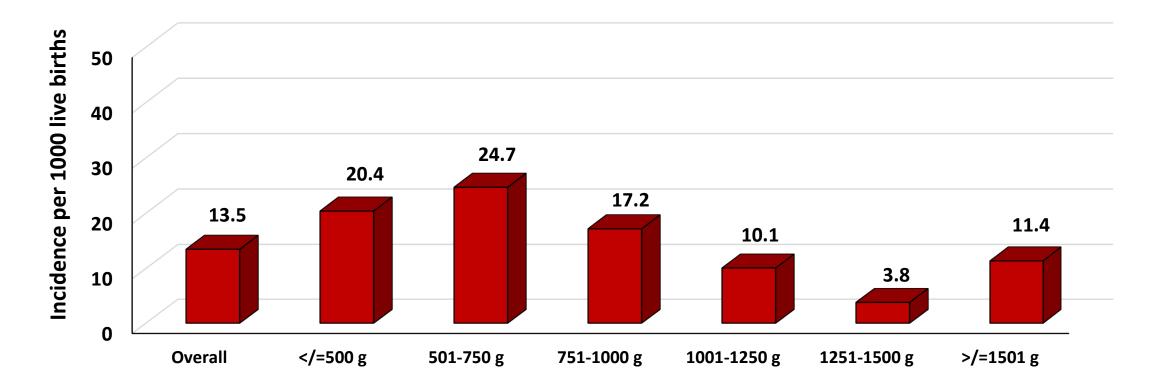

The Right Infants

EOS Incidence ~20-fold Higher Among Preterm and VLBW Infants



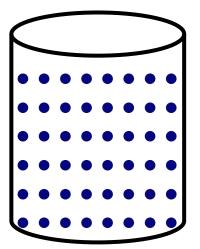
EOS Among VLBW Infants

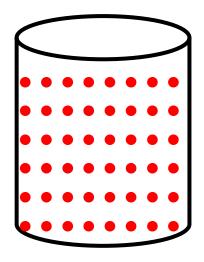
- Prospective observational study of 84,333 infants
 - -753 centers participating in Vermont-Oxford Network
 - -49 states and District of Columbia
- Gestational age 22-29 weeks (regardless of BW) or
- Birth weight 401-1500 grams (regardless of GA)
- January 1, 2018 December 31, 2019


EOS Incidence and Mortality Varies by Gestational Age

12-fold difference between highest and lowest gestational age category

EOS Incidence and Mortality Varies Less by Birth Weight

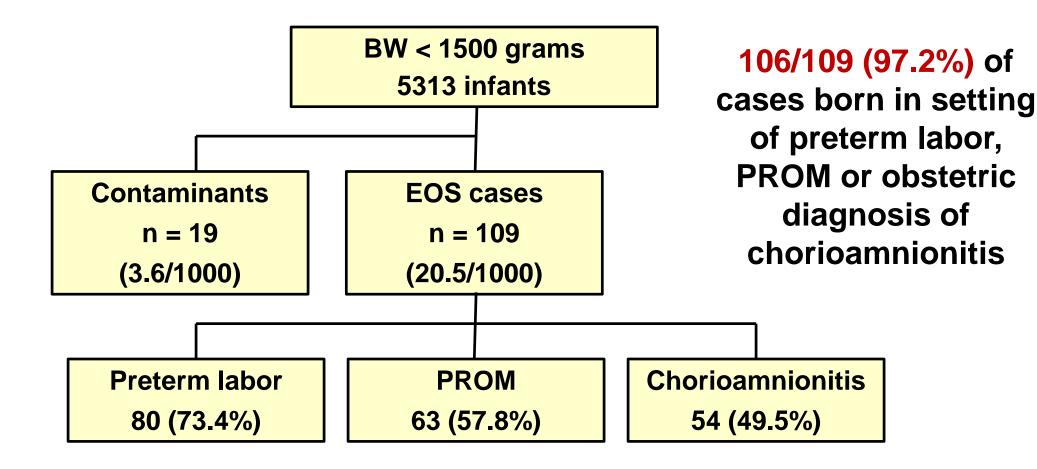

6-fold difference between highest and lowest birth weight categories


Could We Make a Sepsis Risk Calculator for Preterm Infants?

- Bayesian approach to risk stratification makes some assumptions:
 - robust predictors derived from cases
 - Gestational age, preterm labor, preterm ROM, maternal intraamniotic infection, clinical instability
 - distinct prevalence in the controls
 - Everyone has risky GA; 2/3 born in setting of PTL or PPROM; maternal infection is suspected in all PTL/PPROM; most have clinical illness
- Room to differentiate
 - Baseline risk is $1:2000 \rightarrow$ lots of room to adjust upward
 - Baseline risk is 1:90 \rightarrow depending on your perspective, there may only be room to adjust downward

Our Goal is Opposite that for Term Infants

Goal of EOS risk assessment among *term* infants is to determine who *should* receive empiric antibiotics



Goal of EOS risk assessment among *preterm* infants is to determine who might be *spared* empiric antibiotics– or at least, not subjected to prolonged culture-negative antibiotics

VLBW EOS Case Study

- Retrospective cohort study
- All live born infants with BW < 1500 grams
 - **BWH 1990-2015**
- Blood-culture proven bacterial or fungal infection occurring < 72 hours of age
- Detailed review of maternal and infant medical records and microbiology database

Delivery Characteristics of Cases

Three Cases Occurred Without these Characteristics

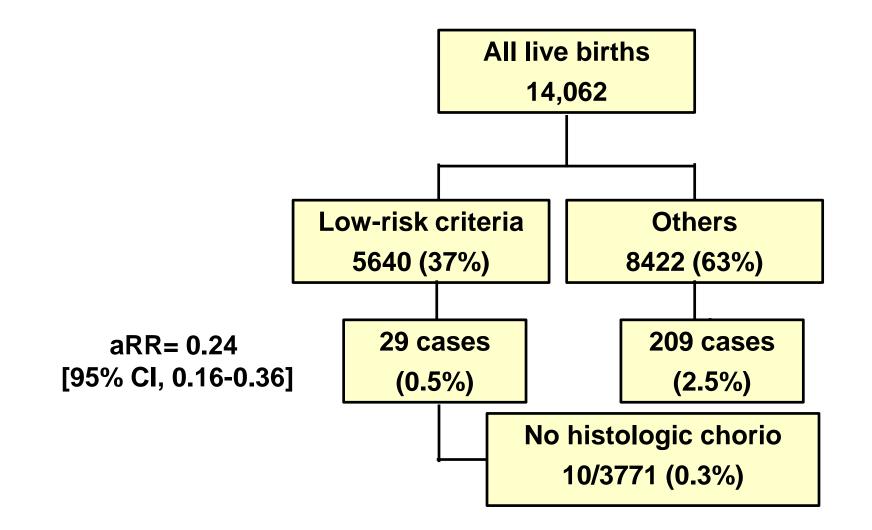
- In 2 cases, otherwise uncomplicated pregnancy presented with decreased fetal movement, with emergent delivery for poor fetal testing
 - Both cases grew *Listeria monocytogenes*
- Final case of "EOS" was likely a contaminant
 - Streptococcus mitis grew in 1/2 culture bottles
 - Bacteremia cleared despite organism resistance to both administered antibiotics (ampicillin and gentamicin)

What is the Risk in the Absence of these Characteristics?

- Linked neonatal data with maternal ICD-9 codes (1999-2012)
 - 2748 mother-infant pairs
 - 605 (22%) with ICD-9 code for pre-eclampsia and delivery by C-section

What is the Risk in the Absence of these Characteristics?

Linked neonatal data with maternal ICD-9 codes (1999-2012) for pre-eclampsia, chorioamnionitis and delivery by C-section

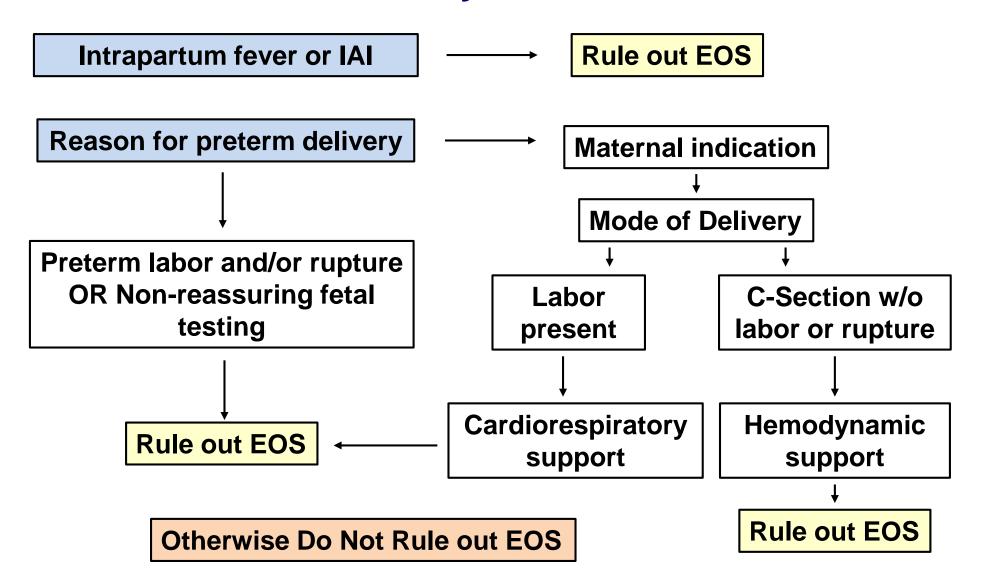

	PET/no Risk Factors (n = 605)	Others (n = 2143)	p-value
Blood culture, N (%)	591 (99.8)	2019 (99.7)	0.52
Antibiotics, N (%)	508 (85.3)	1990 (94.5)	<0.001
EOS cases, N (cases per 1000 live births)	1 (1.7)	45 (21.0)	0.001

Overall EOS rate: 16.7/1000 live births

Can Delivery Characteristics Predict EOS Risk? Neonatal Research Network

- Infants born GA 22 0/7 -28 0/7 weeks and surviving > 12 hours
 NRN centers 2006-2014
- NRN dataset does not collect "preterm labor"
- Hypothesized low-risk criteria
 - Birth by C-section
 - ROM at delivery
 - No obstetric diagnosis of chorioamnionitis

Delivery Characteristics of ELBW Cases

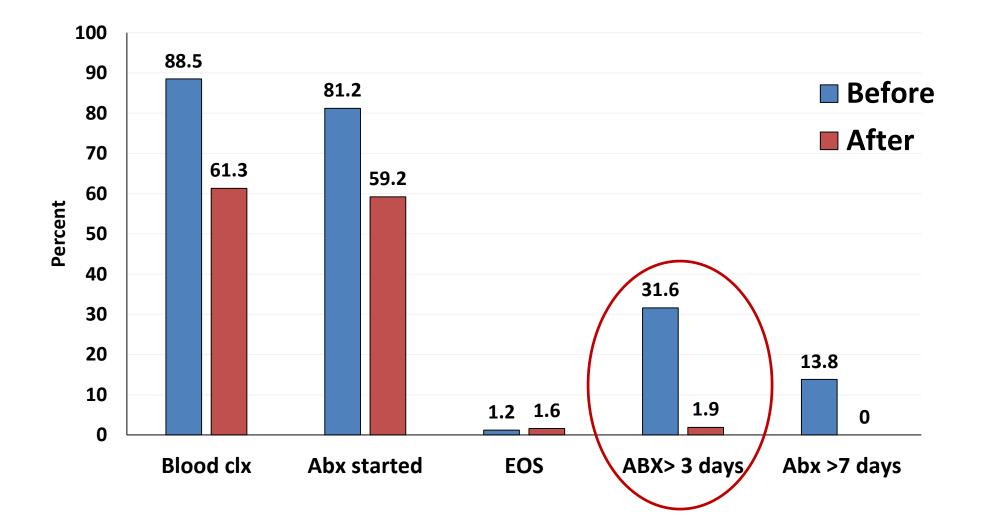

Impact of Prolonged Antibiotics

- Prolonged antibiotics (≥ 5 days)
 - 37.1% of low-risk group (66:1)
 - -47.4% of others (19:1)
- Among low-risk infants, comparing those given or not give prolonged antibiotics
 - Death: aRR (95% CI): 1.52 (1.28-1.80)
 - BPD: aRR (95%CI): 1.28 (1.20-1.36)

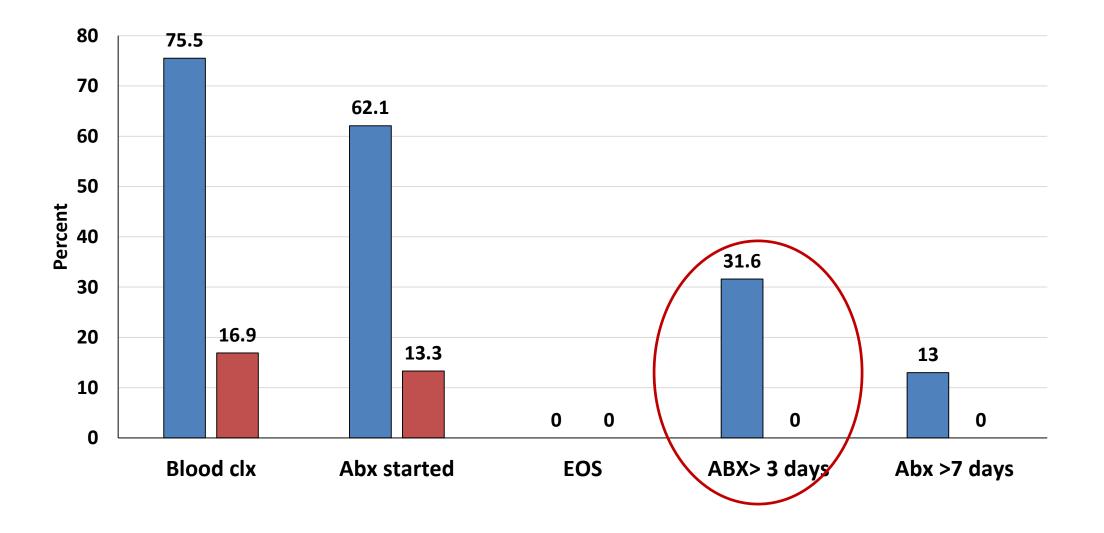
Can We Do Better for Preterm Infants?

- Can we *discriminate* better between at-risk infants?
 - Incidence of EOS markedly lower among preterm infants born in the absence of premature rupture of membranes, preterm labor or concern for chorioamnionitis
- Could we safely evaluate *fewer* infants and still identify the infected ones?
 - ~25% of VLBW infants are at such low risk of EOS we could refrain from initiation of empiric antibiotics, or at least extension in the absence of culture-confirmed infection

Preterm EOS Guideline Based on Delivery Criteria


Single Center Pre/Post Implementation Analysis

- Guideline discussed from 2015
- Formally implemented April 2017
- Compared antibiotic initiation and balance measures
 - Pre-implementation: 01/01/2009-03/31/2017 (n=727 infants)
 - Post-implementation: 04/01/2017 to 01/31/2020 (n=191 infants)
- Set balance measures
- Study approved with waiver of consent


Demographics of Study Cohorts

	Pre n = 727	Post n = 191	p-value
BW (grams), mean (SD)	1056 (298)	1046 (312)	0.70
• ELBW, n (%)	297 (40.9)	85 (44.5)	0.36
GA (weeks), median (IQR)	28 4/7 (26 3/7 – 30 4/7)	28 5/7 (26 3/7 – 30 4/7)	0.98
Female, n (%)	365 (50.2)	107 (56.0)	0.15
Multiple birth, n (%)	233 (32.1)	41 (21.5)	0.004
Cesarean delivery, n (%)	564 (77.6)	137 (71.7)	0.09
ROM at delivery, n (%)	419 (57.6)	128 (67.0)	0.02
Any labor (spontaneous or induced), n (%)	425 (58.5)	92 (48.2)	0.01
Infants meeting low-risk criteria, n (%)	298 (41.0)	83 (43.5)	0.54

Impact Among All VLBW Infants

Impact Among Low-Risk VLBW Infants

Guideline Associated With Decreased Antibiotic Initiation Among ELBW Infants

		ELBW Infants			
	Pre	Post	p-value		
Antibiotic initiation,	281/297	56/85	<0.001		
all ELBW, n (%)	(94.6)	(65.9)			
Antibiotic initiation,	105/120	8/36	<0.001		
low-risk ELBW, n (%)	(87.5)	(22.2)			

Balance Measures: Day 4-7 After Birth

	All VLBW Infants		Low-Risk VLBW Infants			
	Pre n = 727	Post n = 191	p-value	Pre n = 298	Post n = 83	p-value
Blood culture obtained, n (%)	130 (17.9)	25 (13.1)	0.12	61 (20.5)	9 (10.8)	0.045
Antibiotic initiation, n (%)	67 (9.2)	22 (11.5)	0.34	34 (11.4)	9 (10.8)	0.89
Blood culture +pathogen, n (%)	17 (2.3)	3 (1.6)	0.52	6 (2.0)	1 (1.2)	0.63
Deceased/Transfer by 7 days, n (%)	36 (5.0)	9 (4.7)	0.89	11 (3.7)	2 (2.4)	0.57

No significant differences in antibiotic initiation, infection or death/transfer later in the first week after birth

American Academy of Pediatrics Guidance

 $\label{eq:clinical relative} CLINICAL \ REPORT \quad \mbox{Guidance for the Clinician in Rendering Pediatric Care}$ CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care American Academy American Academy American Academy of Pediatrics of Pediatrics of Pediatrics DEDICATED TO THE HEALTH OF ALL CHILDREN DEDICATED TO THE HEALTH OF ALL CHILDREN DEDICATED TO THE HEALTH OF ALL CHILDREN Management of Neonates Born at \geq 35 Management of Neonates Born at <340/7 Weeks' Gestation With Suspected 6/7 Weeks' Gestation With Suspected Management of Infants at Risk for or Proven Early-Onset Bacterial Sepsis or Proven Early-Onset Bacterial Sepsis Group B Streptococcal Disease Karen M. Puopolo, MD, PhD, FAAP, a,b William E. Benitz, MD, FAAP, C Theoklis E. Zaoutis, MD, MSCE, FAAP, a,d Karen M. Puopolo, MD. PhD. FAAP.^{a,b} William E. Benitz, MD. FAAP.^c Theoklis E. Zaoutis, MD. MSCE, FAAP.^{a,l} COMMITTEE ON FETUS AND NEWBORN, COMMITTEE ON INFECTIOUS DISEASES Karen M. Puopolo, MD, PhD, FAAP, ab Ruth Lynfield, MD, FAAP, James J. Cummings, MD, MS, FAAP, COMMITTEE ON FETUS AND COMMITTEE ON FETLIS AND NEWBORN, COMMITTEE ON INFECTIOUS DISEASES NEWBORN, COMMITTEE ON INFECTIOUS DISEASES

- Clinical Reports published in December 2018 and August 2019 editions of *Pediatrics*
- Recommend limited use of laboratory tests
- Endorse use of one of 3 methods for term risk stratification
- Endorse concept and use of "low-risk" preterm infant

Summary

- Understanding the impact of frequent antibiotic exposures can motivate preterm NICU antibiotic stewardship
- Data on epidemiology, microbiology and blood culture performance can inform antibiotic use
- Delivery characteristics can identify preterm infants who can be safely spared antibiotic initiation shortly after birth
- Incorporating stewardship into national professional guidelines will (hopefully) mediate national change

Thank you!

Questions?

Karen.Puopolo@pennmedicine.upenn.edu

puopolok@chop.edu

